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Abstract—A novel asymmetric synthetic method allowing a facile entry to chiral cyclic indole compounds has been developed by
means of asymmetric carbopalladation–amination of allenes using a palladium catalyst with chiral phosphine ligands: intramolec-
ular carbopalladation of allenes, which bear o-iodophenyl amino groups, was followed by intramolecular amination of the
resultant �-allylpalladium intermediates. The enantioselectivity of the asymmetric reactions were found to be dependant on the
chiral phosphine ligands and the solvent used; N-methylpyridone was the most effective solvent for achieving efficient
enantioselectivity with high chemical yields, and (S)-(−)-BINAP or (S)-Tol-BINAP were revealed to be the most useful of the
chiral phosphine ligands examined, depending on the substrate employed. © 2002 Elsevier Science Ltd. All rights reserved.

In recent years, allenes have received much attention as
three-carbon units in organic synthesis, particularly in
transition metal-catalyzed reactions.1 Furthermore,
quite recently, increasing interest has been placed on
the chemistry of allenes with axial chirality and asym-
metric synthesis with allenes.2

We wish to communicate a novel, direct catalytic asym-
metric synthesis of cyclic indole derivatives by palla-
dium-catalyzed reactions of allenes, which involve
o-iodoaryl groups and amino components as nucle-
ophiles in the molecules.

In general, upon treatment with aryl iodides or allylic
halides under palladium catalysis, allenic compounds
provide �-aryl or -allylic �-allylpalladium complexes
which can be reacted with nucleophiles to give �,�-
functionalized olefinic compounds in one-pot reac-
tions.3 Previously, we reported the stereospecificity of
the above reactions of chiral allenes,4 and the palla-
dium-catalyzed asymmetric �,�-functionalization of
allenes by intermolecular carbopalladation and nucleo-
philic substitution of the allene using a palladium cata-
lyst with chiral phosphine ligands.5

Evidently, it should be of great importance and interest
for the construction of polycyclic compounds that upon
treatment with a palladium catalyst, allenes bearing
o-iodoaryl groups and nucleophilic functionalities
undergo intramolecular carbopalladation at the allene
function, followed by intramolecular nucleophilic sub-
stitution reactions, providing a facile and direct entry to
heterocycles or carbocycles in one-pot reactions.6

Herein, we report our recent results on the palladium-
catalyzed asymmetric reactions of allenes involving the
above-mentioned two functional groups at the appro-
priate sites in the molecules (Scheme 1).

The carbopalladation–amination of allene 1 using
K2CO3 or Et3N as base gave a cyclized product, 7a,8-

Scheme 1.* Corresponding author.
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dihydro - 8 - i - propylidene - 7a - methylpyrrolido[1.2 - a ]-
indole 2 in good yields but with almost no asymmetric
induction. Therefore, we investigated the reactions
using silver salts (which are well known as readily
counterion-exchangable reagents) instead of K2CO3 or
Et3N.6,7 The reactions were carried out in MeCN,
DME, DMSO, benzene, or N-methylpyridone (NMP)
at 50–60°C in the presence of Pd(dba)2 (0.1 equiv.), a
chiral ligand (0.2 equiv.), and Ag3PO4 (1.5 equiv.), to
give the chiral cyclized product 2, in moderate yields.
Of the chiral phosphine ligands examined: {(S)-(−)-2,2�-
bis(diphenylphosphino)-1,1�-binaphthyl (BINAP), (S)-
(+)-2,2�-bis-(di-p-tolylphosphino)-1,1-binaphthyl (Tol-
BINAP), (4R)-trans-[(2,2-dimethyl-1,3-dioxolane-4,5-
diyl)bis(methylene)]bis(diphenylphosphine) ((−)-DIOP),
(4R,5R) - (+) - 4,5 - bis[bis(4� - methoxy - 3�,5� - dimethyl-
phenyl)phosphinomethyl] - 2,2 - dimethyl - 1,3 - dioxolane
((+)-MOD-DIOP), (S)-N,N-dimethyl-1-[(R)-2-(di-
phenylphosphino)ferrocenyl]ethylamine (PPFA), (S)-
N,N-dimethyl-1-[(R)-1�,2-bis(diphenylphosphino)ferro-
cenyl]ethylamine (BPPFA), (S) - 1 - [(R) - 1�,2 - bis-
(diphenylphosphino)ferrocenyl]ethanol (BPPFOH), and
(S) -1- [(R) -1�,2-bis(diphenylphosphino)ferrocenyl]ethyl
acetate (BPPFOAc)}, (S)-(−)-BINAP was found to
induce high enantioselectivity (82%) under the reaction
conditions in NMP at 50°C with Ag3PO4. The use of
NMP as solvent resulted in the highest chemical yields
and good enantiomeric purities of (S)-2. The highest
enantioselectivity of (S)-2 (e.e.=88%) was obtained
using (S)-Tol-BINAP as a chiral ligand in NMP at
50°C. The enantiomeric excess (e.e.) of the product 2
was determined by HPLC analysis with a Chiralcel OJ
column. The results obtained are summarized in Table
1.

Other chiral phosphine ligands provided 2 with much
lower enantioselectivity: (−)-DIOP (17% e.e. (S)) and
(+)-MOD-DIOP (12% e.e. (S)) and the use of ferro-
cenyl ligands such as (S)-(R)-PPFA, (S)-(R)-BPPFA,
(S)-(R)-PPFOH, and (S)-(R)-BPPFOAc also resulted
in the formation of 2 with poor enantioselectivities (1%
(S), 2% (R), 5% (R), and 12% e.e. (S), respectively).

Similarly, the carbopalladation–amination reaction of
another allene, 3, was investigated. The reactions were
carried out at 60°C with Pd(dba)2 (0.1 equiv.), a chiral
phosphine ligand (0.2 equiv.), and Ag3PO4 (1.5 equiv.),
providing 8a,9-dihydro-9-i-propylidene-8a-methylpipe-
rido[1.2-a ]indole 4, as the main product. Unexpectedly,
in this model, a small amount of 1,4-(dimethyl-
methano)-5-methyl-1-azabenzo[2.3]cyclonon-4-ene 5
was detected as a by-product (the ratio of 4 to 5 was
determined to be over 99% by the 1H NMR analysis).6

Surprisingly, unlike the aforementioned model 1, in the
reactions of 3 (S)-(−)-BINAP was ineffective, but a
ferrocenyl ligand, (S)-(R)-BPPFOAc, was demon-
strated to be rather useful in achieving high asymmetric
induction (58%) for (S)-4, as listed in Table 1. The
highest asymmetric induction (87%) for (S)-4 was
obtained in the palladium-catalyzed reaction of 3 using
(S)-Tol-BINAP as a chiral ligand in NMP at 60°C.
Other phosphine ligands ((+)-MOD-DIOP, (S)-(R)-
PPFA and (S)-(R)-BPPFA) provided 4 with low enan-
tioselectivities (8% (R), 10% (S), and 4% (R) e.e.,
respectively).

The aforementioned absolute configurations of the
products 2 and 4 obtained with chiral phosphine lig-

Table 1. Asymmetric synthesis of indoles by palladium-catalyzed reactions of allenesa

Ligand Solvent Reaction temp. Product yield (%)bSubstrate Reaction time E.e. (%) of the products (S)c,d

(°C) (h)

60 8 (35) (3)MeCN(S)-(−)-BINAP1 2118
60DME(S)-(−)-BINAP 181 19 (47) (3) 8

1 18(S)-(−)-BINAP 3 (13) (3) 54DMSO 60
31 (100) (3)1860Benzene(S)-(−)-BINAP1 20

NMP 65(S)-(−)-BINAP1 72 (98) (3)1860
821 (S)-(−)-BINAP NMP 50 48 67 (88) (3)

48 58 (90) (3) 88NMP1 50(S)-Tol-BINAP
283 (S)-(−)-BINAP MeCN 60 24 21 (57) (4)

3 2847 (60) (4)3660DMSO(S)-(−)-BINAP
63 (68) (4)1260 37NMP(S)-(−)-BINAP3
73 (96) (4)(S)-Tol-BINAP 71NMP 60 203

(S)-Tol-BINAP NMP 503 48 68 (90) (4) 87
(S)-(R)-BPPFOH 203 60NMP 3926 (52) (4)

NMP 58(S)-(R)-BPPFOAc 603 20 53 (77) (4)

a The reactions of 1 or 3 were carried out in the presence of Pd(dba)2 (0.1 equiv.), ligands (0.2 equiv.), and AG3PO4 (1.5 equiv.).
b Yields based on recovered starting material are described in parentheses.
c The enantiomeric excess (e.e.) of 2 and 4 was calculated by HPLC analysis using a Chiralcel OJ column.
d The absolute configuration of the newly created stereogenic carbons in the products is predicted by the plausible mechanism proposed.
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Scheme 2.

ands were deduced on the basis of the steric environ-
ment of the intermediate �-allylpalladium complex
formed by carbopalladation of the allene with chiral
ligands. With (S)-BINAP or (S)-Tol-BINAP as the
chiral controller, as shown in Scheme 2, the formation
of two transition states 6a,b including �-allylpalladium
complexes coordinated with (S)-BINAP or (S)-Tol-
BINAP would be possible. However, the formation of
6a is more favorable owing to the existence of steric
interference between the nucleophilic (amine) part and
the edge group of (S)-BINAP and (S)-Tol-BINAP in
6b. Therefore, the intramolecular nucleophilic reaction
(amination) occurs through 6a from the less crowded
side opposite the palladium catalyst to afford (S)-2 and
-4.

Thus, it should be noted that a novel asymmetric
cyclization reaction is realized by the intramolecular
�,�-functionalization of an allene under palladium
catalysis with chiral phosphine ligands. We are now in
the process of further investigation of asymmetric syn-
thesis along this line, by applying other heteroatoms
and carbanions as intramolecular nucleophiles for
direct construction of chiral polycyclic heterocycles and
carbocycles.
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